$e=mc^2$ E_1= \(m c^3\)
and now, the end is near and so I face the final $$\LaTeX$$
0000000000|
1111111111|
2222222222|
3333333333|
4444444444|апрапр
5555555555|
6666666666|
7777777777|cvv
8888888888|
9999999999|
$$adf$$
oO0 1ijIl 0123456789 3.14 0th 1st 2nd 4rd H2O
*oO0 1ijIl 0123456789 3.14 0th 1st 2nd 4rd H2O*
**oO0 1ijIl 0123456789 3.14 0th 1st 2nd 4rd H2O**
***oO0 1ijIl 0123456789 3.14 0th 1st 2nd 4rd H2O***jh поо порпо hgjhg опрор
$\text{oO0 1ijIl 0123456789 3.14 0th 1st 2nd 4rd H2O}$
*oO$\textit0$ $\textit1$ijIl $\textit{0123456789}$ $\textit{3.14}$ $\textit0$th $\textit1$st $\textit2$nd $\textit4$rd H$\textit2$O*
**oO$\textbf0$ $\textbf1$ijIl $\textbf{0123456789}$ $\textbf{3.14}$ $\textbf0$th $\textbf1$st $\textbf2$nd $\textbf4$rd H$\textbf2$O**
***oO$\textit0$ $\textit1$ijIl $\textit{0123456789}$ $\textit{3.14}$ $\textit0$th $\textit1$st $\textit2$nd $\textit4$rd H$\textit2$O***
***oO$\boldsymbol{0}$ $\textbf1$ijIl $\textbf{0123456789}$ $\textbf{3.14}$ $\textbf0$th $\textbf1$st $\textbf2$nd $\textbf4$rd H$\textbf2$O***
1. monospace:
1. let's take this Poisson integral :
let define $J = \int\limits_{-\infty}^{\infty}e^{-x^2}dx$
now use substitution $x=r\cdot cos(ϕ)$, $y=r\cdot sin(ϕ)$, so $x^2+y^2=r^2$, and find $J^2 = \int\limits_{-\infty}^{\infty}e^{-x^2}dx\int\limits_{-\infty}^{\infty}e^{y^2}dy = \{dxdy = rdrd\phi\} = \int\limits_{0}^{\infty}\int\limits_{0}^{2\pi}e^{-r^2}rdrd\phi$
so $J^2 = 2\pi(-\frac12)\int\limits_{0}^{\infty}e^{-r^2}d(r^2)$ = $-\pi e^{-r^2}\vert_0^{\infty} = \pi$
we can find that $J = \sqrt{\pi}$
after substitue $x \rightarrow x/\sqrt 2$
so we have $\int\limits_{-\infty}^{\infty}e^{-\frac{x^2}{2}}\frac{dx}{\sqrt{2}} \rightarrow \int\limits_{-\infty}^{\infty}e^{-\frac{x^2}{2}}dx = \sqrt{2\pi}$
now make following assumptions :
$\mu \ge 0$ and $\sigma \ge 0$